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Optimal Generation Scheduling of Cascaded Hydrothermal System Using Genetic Algorithm and Constriction Factor Based Particle Swarm Optimization Technique
M.M. Salama, M.M. Elgazar, S.M. Abdelmaksoud, H.A. Henry
Abstract— In this paper, a genetic algorithm (GA) and particle swarm optimization with constriction factor (CFPSO) are proposed for solving the short term multi chain hydrothermal scheduling problem with non smooth fuel cost objective functions. The performance of the proposed techniques is demonstrated on hydrothermal test system comprising of three thermal units and four hydro power plants. A wide range of thermal and hydraulic constraints such as power balance constraint, minimum and maximum limits of hydro and thermal units, water discharge rate limits, reservoir volume limits, initial and end reservoir storage volume constraint and water dynamic balance constraint are taken into consideration. The simulation results obtained from the constriction factor based particle swarm optimization are compared with the outcomes obtained from the genetic algorithm to reveal the validity and verify the feasibility of the proposed methods. The test results show that the particle swarm optimization technique is better solution than genetic algorithm in terms of solution quality and computational time. 
Index Terms— Hydrothermal Generation Scheduling, Valve Point Loading Effect, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Constriction Factor (CF)
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1
Introduction                                                                     

T

HE hydrothermal generation scheduling plays an important role in the operation and planning of a power system. Since the operating cost of thermal power plant is very high compared to the operating cost of hydro power plant, the integrated operation of the hydro and thermal plants in the same grid has become the more economical [1]. The main objective of the short term hydro thermal scheduling problem is to determine the optimal generation schedule of the thermal and hydro units to minimize the total production cost over the scheduling time horizon (typically one day or one week) subjected to a variety of thermal and hydraulic constraints. The hydrothermal generation scheduling is mainly concerned with both hydro unit scheduling and thermal unit dispatching. The hydrothermal generation scheduling problem is more difficult than the scheduling of thermal power systems. Since there is no fuel cost associated with the hydro power generation, the problem of minimizing the total production cost of hydrothermal scheduling problem is achieved by minimizing the fuel cost of thermal power plants under the constraints of water available for the hydro power generation in a given period of time [2]. In short term hydrothermal scheduling problem, the reservoir levels at the start and the end of the optimization period and the hydraulic inflows are assumed known. In addition, the generating unit limits and the load demand over the scheduling interval are known. Several mathematical optimization techniques have been used to solve short term hydrothermal scheduling problems [3]. In the past, hydrothermal scheduling problem is solved using classical mathematical optimization methods such as dynamic programming method [4-5], lagrangian relaxation method [6-7], mixed integer programming [8], interior point method [9], gradient search method and Newton raphson method [2]. In these conventional methods simplifying assumptions are made in order to make the optimization problem more tractable. Thus, most of conventional optimization techniques are unable to produce optimal or near optimal solution of this kind of problems.  The computational time of these methods increases with the increase of the dimensionality of the problem. The most common optimization techniques based upon artificial intelligence concepts such as evolutionary programming [10-11], simulated annealing [12-14], differential evolution [15], artificial neural network [16-18], genetic algorithm [19 -22] and particle swarm optimization [23-27] have been given attention by many researchers due to their ability to find an almost global or near global optimal solution for short term hydrothermal scheduling problems with operating constraints. Major problem associated with these techniques is that appropriate control parameters are required. Sometimes these techniques take large computational time due to improper selection of the control parameters.

 The PSO is a population based optimization technique first proposed by Kennedy and Eberhart in 1995. In PSO, each particle is a candidate solution to the problem. Each particle in PSO makes its decision based on its own experience together with other particles experiences. Particles approach to the optimum solution through its present velocity, previous experience and the best experience of its neighbors [28]. Compared to other evolutionary computation techniques, PSO can solve the problems quickly with high quality solution and stable convergence characteristic, whereas it is easily implemented.

The genetic algorithm (GA) is a stochastic global search and optimization method that mimics the metaphor of natural biological evolution such as selection, crossover and mutation. GA is started with a set of candidate solutions called population (represented by chromosomes). At each generation, pairs of chromosomes of the current population are selected to mate with each other to produce the children for the next generation. The chromosomes which are selected to form the new offspring are selected according to their fitness. In general, the chromosomes with higher fitness values have higher probability to reproduce and survive to the next generation. While the chromosomes with lower fitness values tend to be discarded. This process is repeated until a termination condition is reached (for example maximum number of generations). Most of the GA parameters are set after considerable experimentation and the major drawback of this method is the lack of a solid theoretical basis for their setting.
2
problem formulation

The main objective of short term hydro thermal scheduling problem is to minimize the total fuel cost of thermal power plants over the optimization period while satisfying all thermal and hydraulic constraints. The objective function to be minimized can be represented as follows:
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In general, the fuel cost function of thermal generating unit i at time interval t can be expressed as a quadratic function of real power generation as follows:
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 is the real output power of thermal generating unit i  at time interval t in (MW), Fit (Pgit) is the operating fuel cost of thermal unit i in ($/hr), FT is the total fuel cost of the system in ($), T is the total number of time intervals for the scheduling horizon, nt is the numbers of hours in scheduling time interval t, N is the total number of thermal generating units, 
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and  ci  are the fuel cost coefficients of thermal generating unit i.

The generating units with multi-valve steam turbines exhibit a greater variation in the fuel cost function. The valve opening process of multi-valve steam turbines result in ripples in fuel cost curve [29]. Due to the valve point effects, the real input-output characteristic contains higher order non linearity and discontinuity which result in non smooth and non convex fuel cost functions. The valve point effects are taken into consideration by adding rectified sinusoidal cost function to the original fuel cost function described in (2). The fuel cost function of thermal power plant with valve point loading effect can be expressed as:
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Where Fitv (Pgit) is the fuel cost function of thermal unit i including the valve point loading effect and fi, ei are the fuel cost coefficients of generating unit i with valve point loading effect.

The minimization of the objective function of short term hydrothermal scheduling problem is subject to a number of thermal and hydraulic constraints. These constraints include the following:
1) Real Power Balance Constraint:

For power balance, an equality constraint should be satisfied. The total active power generation from the hydro and thermal plants must equal to the total load demand plus transmission line losses at each time interval over the scheduling period.

            
[image: image6.wmf]NM

githjtDtLt

i=1j=1

P+P=P+P

åå

                        (4)
Where, PDt is the total load demand during the time interval t in (MW), Phjt is the power generation of hydro unit j at time interval t in (MW), Pgit is the power generation of thermal generating unit i at time interval t in (MW) and PLt represents the total transmission line losses during the time interval t in (MW). For simplicity, the transmission power loss is neglected in this paper.
2) Thermal Generator Limit Constraint:

The output power generation of thermal power plant must lie in between its minimum and maximum limits. The inequality constraint for each thermal generator can be expressed as:
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                                            (5)
Where Pgimin and Pgimax are the minimum and maximum power outputs of thermal generating unit i in (MW), respectively. The maximum output power of thermal generator i is limited by thermal consideration and minimum power generation is limited by the flame instability of a boiler.
3) Hydro Generator Limit Constraint:

The output power generation hydro power plant must lie in between its minimum and maximum bounds. The inequality constraint for each hydro generator can be defined as:
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Where Phjmin is the minimum power generation of hydro generating unit j in (MW) and Phjmax is the maximum power generation of hydro generating unit j in (MW).
4) Reservoir Storage Volume Constraint:

The operating volume of reservoir storage limit must lie in between the minimum and maximum capacity limits.
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Where Vhjmin is the minimum storage volume of reservoir j and Vhjmax is the maximum storage volumes of reservoir j.
5) Water Discharge Rate Limit Constraint:

The water Discharge rate of hydro turbine must lie in between its minimum and maximum operating limits.
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Where qhjmin and qhjmax are the minimum and maximum water discharge rate of reservoir j, respectively
6) Initial and End Reservoir Storage Volume Constraint:

This constraint implies that the desired volume of water to be discharged by each reservoir over the scheduling period should be in limit
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Where Vhjbegin and Vhjend are the initial and final storage volumes of reservoir j, respectively
7) Water Dynamic Balance Constraint:

The water continuity equation relates the previous interval water storage in reservoirs with the current storage including delay in water transportation between successive reservoirs. The water continuity equation can be represented as:            
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Where Ihjt is water inflow rate of reservoir j at time interval t, Shjt is the spillage from reservoir j at time interval t, τuj is the water transport delay from reservoir u to reservoir j and Ruj is the number of upstream hydro reservoirs directly above the reservoir j.
8) Hydro Plant Power Generation Characteristic:

The hydro power generation is a function of the net hydraulic head, water discharge rate and the reservoir volume. This can be expressed as follows:
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The hydro power generation can be expressed in terms of reservoir volume instead of using the reservoir effective head, and the frequently used functional is:
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Where c1j, c2j, c3j, c4j, c5j and c6j are the Power generation coefficients of hydro generating unit j
3
GENETIC ALGORITHM (GA)

The GA is a method for solving optimization problems that is based on natural selection, the process that drives biological evolution. The general scheme of GA is initialized with a population of candidate solutions (called chromosomes). Each chromosome is evaluated and given a value which corresponds to a fitness level in problem domain. At each generation, the GA selects chromosomes from the current population based on their fitness level to produce offspring. The chromosomes with higher fitness levels have higher probability to become parents for the next generation, while the chromosomes with lower fitness levels to be discarded. After the selection process, the crossover operator is applied to parent chromosomes to produce new offspring chromosomes that inherent information from both sides of parents by combining partial sets of genes from them. The chromosomes or children resulting from the crossover operator will now be subjected to the mutation operator in final step to form the new generation. Over successive generations, the population evolves toward an optimal solution. A schematic outline of simple genetic algorithm is illustrated in figure 1.
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The features of GA are different from other traditional methods of optimization in the following respects [30]:

i- GA does not require derivative information or other auxiliary knowledge.
ii- GA work with a coding of parameters instead of the parameters themselves. For simplicity, binary coded is used in this paper.
iii- GA search from a population of points in parallel, not a single point.
iv- GA use probabilistic transition rules, not deterministic rules.
3.1
Genetic Algorithm Operators

At each generation, GA uses three operators to create the new population from the previous population:
3.1.1 Selection or Reproduction
[image: image51.emf]Selection operator is usually the first operator applied on the population. The chromosomes are selected based on the Darwin's evolution theory of survival of the fittest. The chromosomes are selected from the population to produce offspring based on their fitness values. The chromosomes with higher fitness values are more likely to contributing offspring and are simply copied on into the next population. The commonly used reproduction operator is the proportionate reproduction operator. The ith string in the population is selected with a probability proportional to 
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Where n is the population size, the commonly used selection operator is the roulette-wheel selection method. Since the circumference of the wheel is marked according to the string fitness, the roulette-wheel mechanism is expected to make 
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3.1.2 Crossover or Recombination
The basic operator for producing new chromosomes in the GA is that of crossover. The crossover produce new chromosomes have some parts of both parent chromosomes. The simplest form of crossover is that of single point crossover. In single point crossover, two chromosomes strings are selected randomly from the mating pool. Next, the crossover site is selected randomly along the string length and the binary digits are swapped between the two strings at crossover site.
3.1.3 Mutation
The mutation is the last operator in GA. It prevents the premature stopping of the algorithm in a local solution. The mutation operator enhances the ability of the genetic algorithm to find a near optimal solution to a given problem by maintaining a sufficient level of genetic variety in the population. This operator randomly flips or alters one or more bits at randomly selected locations in a chromosome from 0 to 1 or vice versa.
3.1.4 Parameters of Genetic Algorithm
The performance of GA depends on choice of GA parameters such as:

i. Population size (Np): The population size affects the efficiency and performance of the algorithm. Higher population size increases its diversity and reduces the chances of premature converge to a local optimum, but the time for the population to converge to the optimal regions in the search space will also increase. On the other hand, small population size may result in a poor performance from the algorithm. This is due to the process not covering the entire problem space. A good population size is about 20-30, however sometimes sizes 50-100 are reported as best.

ii. Crossover rate: The crossover rate is the parameter that affect the rate at which the process of cross over is applied. This rate generally should be high, about 80-95%. 

iii. Mutation rate: It is a secondary search operator which increases the diversity of the population. Low mutation rate helps to prevent any bit position from getting trapped at a single value, whereas high mutation rate can result in essentially random search. This rate should be very low.
3.1.5 Termination of Genetic Algorithm
The generational process is repeated until a termination condition has been satisfied. The common terminating conditions are: fixed number of generations reached, a best solution is not changed after a set number of iterations, or a cost that is lower than an acceptable minimum.
4
GA APPLIED TO SHORT TERM HYDRO- THERMAL SCHEDULING PROBLEM

In genetic algorithm, the water discharge through the turbines during each optimization interval is used as the main control variable. In binary genetic algorithm representation, the water discharge rates for each reservoir at each time interval are represented by a given number of binary strings. In GA binary representation, the water discharge rate is used rather than the output power generation of hydro units because the encoded parameter is more beneficial for dealing with water balance constraints. The binary representation of hydro thermal coordination problem is illustrated in figure 2.
[image: image22.emf]
Fig.2. Binary representation of hydrothermal scheduling problem

The generated string can be converted in the feasible range by using the following equation:
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Where qhjmin is the minimum value of discharge rate through hydro turbine j, qhjmax is the maximum value of discharge rate through hydro turbine j, L is the String length (number of bits used for encoding water discharge rate of each hydro unit) and di is the binary coded value of the string ( decimal value of string).

By knowing the water discharge rate of each hydro power plant, the reservoir inflows and the hydro unit characteristic equation, the reservoir storage level and the output power of hydro power plant can be determined. The total power generations of all hydro power plants are subtracted from the total system load demand for each hour. The remaining load must be satisfied by running thermal units for each hour. An economic load dispatch problem is achieved and the fuel cost for each thermal unit over the scheduling period is calculated.
5
ALGORITHM FOR SHORT TERM HYDRO- THERMAL SCHEDULING USING GA METHOD

The sequential steps of solving short term hydro thermal scheduling problem by using genetic algorithm are explained as follows:

Step 1: Read the system input data, namely fuel cost curve coefficients, power generation limits of hydro and thermal units, number of thermal units, number of hydro units, power demands, power generation coefficients of hydro units, water volume limits, discharge rate limits and water inflow rate through the hydro turbines.

Step 2: Select genetic algorithm parameters such as population size, length of string, probability of crossover, probability of mutation and maximum number of generations to be performed.

Step 3: Generate the initial population randomly in the binary form. The initial population must be feasible candidate solutions that satisfy the practical operation constraints of all thermal and hydro units.

Step 4: Calculate the discharge rate of each hydro unit from the decoded population by using equation (16).

Step 5: Check the inequality constraint of the water discharge rate for each hydro unit from the following equation:
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Step 6: Calculate the water storage volume of each reservoir from the water balance continuity equation defined in (11).

Step 7: Check the inequality constraint of reservoir storage volume for each hydro unit by the following equation:
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Step 8: Calculate the hydro power generation of each hydro unit from the hydro power characteristic equation given in (13).

Step 9: Calculate the thermal demand by subtracting the generation of hydro units from the total load demand. The thermal demand (total load – hydro generation) must be covered by the thermal units. The thermal generations are calculated from the power balance equation given in (4).

Step 10: Calculate the output power of each thermal unit by solving economic load dispatch problem.

Step 11: Check the inequality constraint of thermal power generation for each thermal unit according to the following equation:
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Step 12: Evaluate the fitness value for each string in the population by using the objective function stated in equation (1).

Step 13: The chromosomes with lower cost function are selected to become parents for the next generation.

Step 14: Perform the crossover operator to parent chromosomes to create new offspring chromosomes.

Step 15: The mutation operator is applied to the new offspring resulting from the crossover operation to form the new generation.

Step16: Update the population.

Step 17: If the number of iterations reached the maximum, then go to step19. Otherwise go to step 4.

Step18: The string that generates the minimum total fuel cost of the thermal power plants is the optimal solution of the problem. 

Step 19: Print the outputs of hydrothermal scheduling and stop.
6
PARTICLE SWARM OPTIMIZATION WITH CONSTRICTION FACTOR

6.1
Overview of Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a population based stochastic optimization technique, inspired by social behavior of bird flocking or fish schooling. It is one of the most modern heuristic algorithms, which can be used to solve non linear and non continuous optimization problems. PSO shares many similarities with evolutionary computation techniques such as genetic algorithm (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as mutation and crossover. The PSO algorithm searches in parallel using a group of random particles. Each particle in a swarm corresponds to a candidate solution to the problem. Particles in a swarm approach to the optimum solution through its present velocity, its previous experience and the experience of its neighbors. In every generation, each particle in a swarm is updated by two best values. The first one is the best solution (best fitness) it has achieved so far. This value is called Pbest. Another best value that is tracked by the particle swarm optimizer is the best value, obtained so far by any particle in the population. This best value is a global best and called gbest. Each particle moves its position in the search space and updates its velocity according to its own flying experience and neighbor's flying experience. After finding the two best values, the particle update its velocity according to equation (20).
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Where Vik is the velocity of particle i at iteration k, Xik is the position of particle i at iteration k, ω is the inertia weight factor, c1and c2 are the acceleration coefficients, r1and r2 are positive random numbers between 0 and 1, Pbestik is the best position of particle i at iteration k and gbestk is the best position of the group at iteration k.

In the velocity updating process, the acceleration constants c1, c2 and the inertia weight factor are predefined and the random numbers r1and r2 are uniformly distributed in the range of [0,1]. Suitable selection of inertia weight in equation (20) provides a balance between local and global searches, thus requiring less iteration on average to find a sufficiently optimal solution. A low value of inertia weight implies a local search, while a high value leads to global search. As originally developed, the inertia weight factor often is decreased linearly from about 0.9 to 0.4 during a run. It was proposed in [31].  In general, the inertia weight ω is set according to the following equation:
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Where ωmin and ωmax are the minimum and maximum value of inertia weight factor, Itermax corresponds to the maximum iteration number and Iter is the current iteration number.

The current position (searching point in the solution space) can be modified by using the following equation:
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The velocity of particle i at iteration k must lie in the range:
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The parameter Vmax determines the resolution or fitness, with which regions are to be searched between the present position and the target position. If 
[image: image31.wmf]max
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is too high, the PSO facilitates a global search and particles may fly past good solutions. Conversely, if Vmax is too small, the PSO facilitates a local search and particles may not explore sufficiently beyond locally good solutions. In many experiences with PSO, Vmax was often set at 10-20% of the dynamic range on each dimension. 

The constants c1 and c2 in equation (20) pull each particle towards Pbest and gbest positions. Thus, adjustment of these constants changes the amount of tension in the system. Low values allow particles to roam far from target regions, while high values result in abrupt movement toward target regions. Figure 3 shows the search mechanism of particle swarm optimization technique using the modified velocity, best position of particle i and best position of the group.
             [image: image32.emf]
Fig.3. Updating the position mechanism of PSO technique
6.2 Constriction Factor Approach

After the original particle swarm proposed by Kennedy and Eberhart, a lot of improved particle swarms were introduced. The particle swarm with constriction factor is very typical. Recent work done by Clerc [32] indicates that the use of a constriction factor may be necessary to insure convergence of the particle swarm optimization algorithm. In order to insure convergence of the particle swarm optimization algorithm, the velocity of the constriction factor approach can be represented as follows:
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Where K is the constriction factor and given by:
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Where:
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The convergence characteristic of the particle swarm optimization technique can be controlled by
[image: image37.wmf].

j

In the constriction factor approach,
[image: image38.wmf]j

must be greater than 4.0 to guarantee the stability of the PSO algorithm. However, as
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increases the constriction factor decreases and diversification is reduced, yielding slower response. Typically, when the constriction factor is used, 
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is set to 4.1 (i.e. c1 =c2 = 2.05) and the constant multiplier k is 0.729. The constriction factor approach can generate higher quality solutions than the basic PSO technique.
7
ALGORITHM FOR SHORT TERM HYDRO- THERMAL SCHEDULING USING CFPSO METHOD
The sequential steps of solving short term hydro thermal scheduling problem by using genetic algorithm are explained as follows:

Step 1: Read the system input data, namely fuel cost curve coefficients, power generation limits of hydro and thermal units, number of thermal units, number of hydro units, power demands, power generation coefficients of hydro power plants, upper and lower limits of reservoir volumes, discharge rate limits and water inflow rate through the hydro turbines.

Step 2: Initialize a population of particles with random positions according to the minimum and maximum operating limits of each unit (upper and lower bounds of power output of thermal generating units and upper and lower bounds of water discharge rate of hydro units). These initial particles must be feasible candidate solutions that satisfy the practical operation constraints of all thermal and hydro units. 

Step 3: Initialize the velocity of particles in the range between
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Step 4: Calculate the reservoir storage of jth hydro power plant in the dependent interval by using the water balance continuity equation defined in (11).

Step5: Check the inequality constraint of reservoir storage volume according to equation (18).                    

Step 6: Calculate the hydro power generation from the equation given in (13).

Step 7: Calculate the thermal demand by subtracting the generation of hydro units from the total load demand. The thermal demand (total load – hydro generation) must be covered by the thermal units. The thermal generations are calculated from the power balance equation given in (4).

Step 8: Check the inequality constraint of thermal power generated using equation (19).    
Step 9: Evaluate the fitness value of each particle in the population using the objective function given in equation (1).

Step 10: If the evaluation value of each particle is better than the previous Pbest, then set Pbest equal to the current value.

Step 11: Select the particle with the best fitness value of all the particles in the population as the gbest.

Step 12: Update the velocity of each particle according to equation (24).

Step 13: Check the velocity of each particle according to the following equation:
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Step 14: The position of each particle is modified according to equation (15).

Step 15: Check the inequality constraints of the modified position.

Step 16: If the stopping criterion is reached (i.e. usually maximum number of iterations) go to step 17, otherwise go to step 4.

Step 17: The particle that generates the latest gbest is the optimal generation power of each unit with minimum total fuel cost of the thermal power plants.

Step 18: Print the outputs of hydrothermal scheduling and stop.
8
CASE STUDY AND SIMULATION RESULTS

To verify the feasibility and effectiveness of the proposed algorithms, a hydrothermal power system consists of a multi chain cascade of four hydro units and three thermal units were tested. The effect of valve point loading has been taken into account in this case study to illustrate the robustness of the proposed methods. The transport time delay between cascaded reservoirs is also considered in this case study. The scheduling time period is one day with 24 intervals of one hour each. The data of test system are taken from [17] and [18]. The multi chain hydro sub system configuration is shown in figure 2. The water time transport delays between connected reservoirs are given in table 1. In this case study, the output power of hydro power plants is represented as a function of the reservoir storage and the water discharge rates. The hydro power generation coefficients are given in table 2. The reservoir storage limits, discharge rate limits, initial and end reservoir storage volume conditions and the generation limits of hydro power plants are shown in table 3 while table 4 shows the reservoir inflows of multi chain hydro power plants. The fuel cost coefficients and the minimum and maximum limits of three thermal generating units are given in table 5. The load demand over the 2hours is given in table 6. The proposed algorithms has been implemented in MATLAB language and executed on an Intel Core i3, 2.27 GHz personal computer with a 3.0 GB of RAM. The optimal control parameters used in genetic algorithm are listed in table 7. The PSO control parameters selected for the solution are given in table 8. The program is run 50 times for each algorithm and the best among the 50 runs are taken as the final solutions. The resultant optimal schedule of thermal and hydro power plants and the hourly total fuel cost obtained from the genetic algorithm and the particle swarm optimization technique are shown in table 9 and table 10, respectively. Table 11 and table 12 shows the optimal hourly water discharge of hydro power plants obtained from the genetic algorithm and the particle swarm optimization techniques.  Table 13 shows the comparison of total fuel cost and computation time between the two proposed methods. From table 13, it is observed that the constriction factor based PSO algorithm give high quality solution with less computation time when compared to the genetic algorithm. Figure 5 to figure 8 shows the discharge trajectories of hydro power plants by using two proposed approaches, figure 9 to figure 11 gives the fuel cost of each thermal unit versus day hours by using the two proposed techniques and figure 12 presents the total fuel cost of the system versus 24 hours by using the two proposed methods. 
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Fig.3. Multi chain hydro sub system networks

Table 1: Water time transport delays between connected reservoirs

	Plant
	1
	2
	3
	4

	Ru
	0
	0
	2
	1
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	2
	3
	4
	0

	 Ru   : Number of upstream hydro power plants
: Time delay to immediate downstream hydro power plants
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Table 2: Hydro power generation coefficients

	Plant
	C1
	C2
	C3
	C4
	C5
	C6

	1
	-0.0042
	-0.4200
	0.0300
	0.9000
	10.000
	-50.000

	2
	-0.0040
	-0.3000
	0.0150
	1.1400
	9.5000
	-70.000

	3
	-0.0016
	-0.3000
	0.0140
	0.5500
	5.5000
	-40.000

	4
	-0.0030
	-0.3100
	0.0270
	1.4400
	14.000
	-90.000


Table 3: Reservoir storage capacity limits, plant discharge limits, plant generation limits and reservoir end conditions 
(
[image: image46.wmf]43

×10m

)

	Plant
	Vhmin
	Vhmax
	Vhini
	Vhend
	qhmin
	qhmax
	Phmin
	Phmax

	1
	80
	150
	100
	120
	5
	15
	0
	500

	2
	60
	120
	80
	70
	6
	15
	0
	500

	3
	100
	240
	170
	170
	10
	30
	0
	500

	4
	70
	160
	120
	140
	13
	25
	0
	500


Table 4: Reservoir inflows of multi chain hydro plants (
[image: image47.wmf]43

×10m

)

	Hour
	Reservoir
	Hour
	Reservoir

	
	1
	2
	3
	4
	
	1
	2
	3
	4

	1
	10
	8
	8.1
	2.8
	13
	11
	8
	4
	0

	2
	9
	8
	8.2
	2.4
	14
	12
	9
	3
	0

	3
	8
	9
	4
	1.6
	15
	11
	9
	3
	0

	4
	7
	9
	2
	0
	16
	10
	8
	2
	0

	5
	6
	8
	3
	0
	17
	9
	7
	2
	0

	6
	7
	7
	4
	0
	18
	8
	6
	2
	0

	7
	8
	6
	3
	0
	19
	7
	7
	1
	0

	8
	9
	7
	2
	0
	20
	6
	8
	1
	0

	9
	10
	8
	1
	0
	21
	7
	9
	2
	0

	10
	11
	9
	1
	0
	22
	8
	9
	2
	0

	11
	12
	9
	1
	0
	23
	9
	8
	1
	0

	12
	10
	8
	2
	0
	24
	10
	8
	0
	0


Table 5: Fuel cost coefficients and operating limits of thermal units

	Unit
	          ai

	       bi

	       ci

	       ei


	        fi

	           Pgi min

	          Pgi,max


	1
	0.0012
	2.45
	100
	160
	0.038
	20
	175

	2
	0.0010
	2.32
	120
	180
	0.037
	40
	300

	3
	0.0015
	2.10
	150
	200
	0.035
	50
	500


Table 6: Load demand for 24 hour

	Hour
	PD (MW)
	Hour
	PD (MW)
	Hour
	PD (MW)
	Hour
	PD (MW)

	1
	750
	7
	950
	13
	1110
	19
	1070

	2
	780
	8
	1010
	14
	1030
	20
	1050

	3
	700
	9
	1090
	15
	1010
	21
	910

	4
	650
	10
	1080
	16
	1060
	22
	860

	5
	670
	11
	1100
	17
	1050
	23
	850

	6
	800
	12
	1150
	18
	1120
	24
	800


Table 7: Control parameters of genetic algorithm 

	Genetic algorithm parameters
	Value

	Population size
	50

	Maximum number of generations
	300

	Crossover probability
	0.8

	Mutation probability
	0.05


Table 8: Control parameters of particle swarm optimization

	Genetic algorithm parameters
	Value

	Population size
	50

	Maximum number of generations
	300

	Acceleration coefficients(c1/c2)
	2.05

	Minimum inertia weight (ωmin)
	0.4

	Minimum inertia weight (ωmax)
	0.9

	Constriction factor (k)
	0.729


Table 9: Hourly optimal hydrothermal generation schedule using genetic algorithm

	Hour

	Thermal generation (MW)
	Hydro generation (MW)
	Total fuel cost ($/hr)

	
	Pg1 
	P2g 
	Pg3 
	Ph1 
	Ph2
	Ph3 
	Ph4 
	

	1
	23.1236
	295.3239
	50.0000
	64.5640
	81.4962
	24.6730
	210.8193
	1331.356

	2
	102.7101
	133.1556
	140.0197
	90.4459
	71.3577
	42.8051
	199.5059
	1340.523

	3
	20.0000
	125.0555
	231.9288
	70.2375
	53.9426
	27.6694
	171.1662
	1310.812

	4
	21.4101
	45.0040
	229.4431
	82.1908
	67.5285
	47.5866
	156.8370
	1132.477

	5
	105.9331
	129.7690
	145.1922
	54.6509
	46.2334
	24.2977
	163.9238
	1387.198

	6
	26.0101
	293.1966
	142.0860
	53.1216
	55.7626
	47.1213
	182.7018
	1592.036

	7
	30.3361
	296.2658
	234.1831
	65.6663
	75.4587
	50.2856
	197.8044
	1898.590

	8
	105.3821
	300.0000
	229.9113
	74.1777
	60.1855
	53.8578
	186.4857
	2043.714

	9
	163.2261
	286.1469
	319.0854
	60.4050
	43.9982
	29.5776
	187.5608
	2547.151

	10
	116.2331
	294.1784
	317.9356
	68.8611
	49.2068
	43.3024
	190.2826
	2351.185

	11
	102.4704
	210.1291
	415.0816
	79.7521
	45.5969
	53.2064
	193.7635
	2340.721

	12
	112.0361
	126.2291
	498.8067
	104.4852
	58.7410
	54.3342
	195.3676
	2453.624

	13
	22.1319
	294.9565
	402.5905
	95.3191
	43.6388
	47.9560
	203.4072
	2343.924

	14
	104.2409
	207.1327
	320.9477
	91.9101
	56.9260
	40.8118
	208.0307
	2029.419

	15
	149.0448
	298.0445
	141.1267
	100.2612
	60.8535
	51.1703
	209.4990
	2057.058

	16
	130.1147
	123.3982
	409.0408
	87.6299
	51.4138
	43.7312
	214.6714
	2268.834

	17
	102.9447
	295.1445
	233.2934
	93.7531
	44.0839
	57.7723
	223.0082
	2009.123

	18
	172.0170
	209.7859
	315.2614
	89.2480
	51.2182
	54.4402
	228.0293
	2274.654

	19
	103.0447
	295.2660
	276.1546
	65.2651
	43.1068
	60.3307
	226.8321
	2307.208

	20
	22.2443
	295.1658
	319.2717
	68.2697
	49.0082
	57.8633
	238.1771
	2036.999

	21
	57.4388
	209.1484
	227.4860
	69.2510
	46.2793
	50.7053
	249.6913
	1775.913

	22
	21.0737
	213.1772
	236.1372
	62.6533
	50.6642
	41.7298
	234.5646
	1616.474

	23
	20.0000
	294.7055
	139.2702
	58.7600
	43.6722
	53.3260
	240.2661
	1515.158

	24
	20.0000
	140.1303
	230.1860
	69.8166
	44.9844
	55.9327
	238.9501
	1427.858


Table 10: Hourly optimal hydrothermal generation schedule using constriction factor based particle swarm optimization

	Hour

	Thermal generation (MW)
	Hydro generation (MW)
	Total fuel cost ($/hr)

	
	Pg1 
	P2g 
	Pg3 
	Ph1 
	Ph2
	Ph3 
	Ph4 
	

	1
	102.3522
	209.8194
	57.6422
	60.1722
	80.3207
	38.6494
	201.0440
	1345.009

	2
	20.0000
	126.8176
	230.7566
	73.0700
	79.3509
	55.3298
	194.6751
	1315.606

	3
	105.4454
	130.2316
	139.7551
	54.0153
	55.8002
	42.4402
	172.3121
	1335.646

	4
	25.1898
	128.3247
	141.6169
	86.1289
	65.3077
	48.1490
	155.2830
	1141.171

	5
	123.6643
	116.0352
	140.8527
	54.2512
	43.3706
	23.7179
	168.1081
	1479.744

	6
	20.2832
	300.0000
	144.4642
	54.0606
	73.2636
	41.5883
	166.3402
	1610.288

	7
	32.7205
	300.0000
	230.9010
	88.9708
	71.1724
	55.5877
	170.6477
	1921.262

	8
	101.6320
	296.3523
	234.4262
	77.8782
	70.3955
	54.2548
	175.0610
	2032.832

	9
	104.6402
	295.1020
	365.9320
	56.0490
	37.4051
	44.0579
	186.8139
	2594.627

	10
	110.1216
	300.0000
	319.4361
	64.1774
	44.9308
	40.0597
	201.2744
	2344.922

	11
	102.9433
	299.8210
	324.6830
	96.2948
	46.6031
	38.5205
	191.1343
	2333.356

	12
	29.9546
	300.0000
	410.6102
	102.7084
	56.2583
	57.3524
	193.1162
	2450.648

	13
	20.0000
	294.0590
	408.0650
	87.5439
	45.7874
	54.3512
	200.1934
	2306.124

	14
	20.1798
	294.8191
	319.1150
	81.9074
	51.3624
	52.8587
	209.7574
	2016.600

	15
	65.0533
	297.0703
	229.3150
	94.6490
	50.6550
	49.3154
	223.9421
	2047.800

	16
	116.1536
	139.0801
	406.3149
	84.1369
	53.9792
	42.2257
	218.1095
	2301.257

	17
	103.0538
	209.8115
	317.8150
	99.4313
	47.9614
	52.1143
	219.8126
	1997.518

	18
	35.3345
	298.2462
	320.2436
	102.2590
	69.0529
	60.3747
	234.4891
	2183.483

	19
	102.0183
	211.1061
	321.2727
	84.0163
	40.2404
	52.7194
	258.6312
	2022.778

	20
	100.0383
	212.6210
	313.3650
	58.2941
	42.5457
	50.6354
	272.5005
	2046.704

	21
	29.9704
	295.1772
	140.3611
	79.0149
	64.9985
	37.0795
	263.3983
	1607.165

	22
	109.9750
	134.5710
	232.0451
	57.9149
	42.6570
	42.0930
	240.7441
	1676.804

	23
	103.0293
	125.5876
	230.0580
	65.3415
	42.4109
	45.5238
	238.0490
	1515.265

	24
	22.6076
	209.6222
	140.0572
	67.0476
	49.5320
	42.4138
	268.7197
	1299.011


Table 11: Hourly hydro plant discharge using ga
	Hour
	) 
[image: image48.wmf]43

×10m/hr

)Hydro plant discharges 

	
	qh1
	qh2
	qh3
	qh4

	1
	6.3621
	13.5605
	22.9822
	14.4752

	2
	10.8961
	11.1072
	18.4672
	15.0222

	3
	7.1611
	7.4198
	20.5141
	13.2766

	4
	9.2025
	10.1168
	15.4519
	13.8298

	5
	5.2188
	6.1660
	21.8955
	13.0000

	6
	5.0000
	7.7210
	16.4755
	14.8439

	7
	6.4752
	14.4394
	15.9646
	16.2453

	8
	7.6061
	10.2842
	12.7943
	14.4014

	9
	5.7007
	7.0449
	21.0536
	13.1672

	10
	6.6596
	7.7579
	18.1771
	13.0000

	11
	8.0732
	6.9097
	14.3529
	13.0000

	12
	14.6622
	9.4728
	13.3191
	13.2459

	13
	11.1318
	6.6146
	17.4210
	13.1229

	14
	10.2663
	8.8766
	19.3652
	13.0000

	15
	12.5358
	9.8090
	17.1765
	13.0000

	16
	9.4818
	7.9669
	19.4765
	13.6146

	17
	10.8308
	6.7253
	14.2780
	14.1678

	18
	9.9715
	8.1882
	17.3398
	14.0903

	19
	6.2662
	6.7990
	13.7548
	13.5286

	20
	6.6596
	7.7364
	16.4566
	14.1924

	21
	6.7825
	7.0449
	19.2107
	15.7536

	22
	5.9220
	7.5981
	21.0261
	13.5409

	23
	5.4303
	6.3073
	17.7181
	14.2170

	24
	6.7038
	6.3335
	16.3337
	13.7808


Table 12: Hourly hydro plant discharge using cfpso method
	Hour
	) 
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×10m/hr

)Hydro plant discharges 

	
	qh1
	qh2
	qh3
	qh4

	1
	5.7990
	12.9505
	20.5398
	13.1229

	2
	7.4559
	14.9805
	12.8725
	13.9983

	3
	5.0000
	8.2127
	17.9687
	13.0000

	4
	9.6117
	10.3248
	16.4797
	13.0000

	5
	5.0528
	6.1585
	22.5614
	13.4225

	6
	5.0000
	14.3987
	18.7684
	13.2641

	7
	10.1422
	14.1917
	11.5845
	13.0000

	8
	8.1422
	13.8035
	15.0767
	13.0000

	9
	5.1849
	6.0528
	19.1534
	13.0000

	10
	6.0564
	6.9771
	20.4840
	14.0564

	11
	11.1414
	7.0141
	20.9517
	13.0528

	12
	13.5567
	8.7984
	13.7150
	13.0000

	13
	9.4322
	6.8451
	16.3067
	13.0000

	14
	8.3885
	7.5845
	17.3808
	13.1585

	15
	10.6153
	7.2676
	19.0765
	13.8979

	16
	8.6736
	7.7958
	20.6765
	13.1849

	17
	11.8519
	6.7976
	18.0101
	13.0000

	18
	13.4021
	12.1095
	13.0102
	14.2676

	19
	8.9637
	6.1907
	18.3101
	17.0670

	20
	5.4306
	6.3603
	19.0075
	18.9034

	21
	8.1710
	10.8396
	22.3957
	17.3716

	22
	5.3689
	6.2854
	21.1805
	14.6610

	23
	6.1983
	6.0528
	19.9457
	13.8475

	24
	6.3625
	7.0287
	20.5701
	17.4578


Table 13: comparison of total fuel cost and computation time between GA and CFPSO techniques

	Method
	Total fuel cost ($)
	CPU Time (Sec)

	CFPSO
	44925.62
	183.64

	GA
	45392.009
	198.57
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Fig.5. Discharge trajectories of hydro plant 1 using GA and CFPSO
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9
CONCLUSIONS

In this paper, the constriction factor based particle swarm optimization (CFPSO) technique and genetic algorithm (GA) are proposed for solving short term multi chain hydrothermal scheduling problem. To demonstrate the performance efficiency of the proposed algorithms, they has been applied on test system consists of a multi chain cascade of four hydro units and three thermal units. The effect of valve point loading is considered in this paper to demonstrate the robustness of the proposed techniques. The results obtained from the CFPSO technique are compared with the simulation results obtained from the GA to verify the feasibility of the proposed methods. The numerical results show that the CFPSO approach give a cheaper total generated cost than genetic algorithm. From the tabulated results, it is clear that the computational time of the CFPSO technique is less than the genetic algorithm. . Thus, the proposed CFPSO approach can converge to the minimum fuel cost faster than the GA method.
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Fig.1. Schematic outline of simple genetic algorithm
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Fig.6. Discharge trajectories of hydro plant 2 using GA and CFPSO
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Fig.7. Discharge trajectories of hydro plant 3 using GA and CFPSO
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Fig.8. Discharge trajectories of hydro plant 4 using GA and CFPSO
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Fig.9. Fuel cost of thermal unit 1 using GA and CFPSO
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Fig.10. Fuel cost of thermal unit 2 using GA and CFPSO
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Fig.11. Fuel cost of thermal unit 3 using GA and CFPSO
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Fig.12. Total fuel cost of thermal units using GA and CFPSO
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